SUPPLEMENTARY TABLE 1. Chain of indirect evidence

How would universal screening for hepatitis C affect the number (and composition) of people who screen positive for HCV infection?	How many additional persons would be linked to care?	Do desirable treatment effects outweigh undesirable effects?
K.Q.1.a. What is the prevalence of HCV infection in the United States? In the general population?	K.Q.2.a. What is the diagnostic accuracy of HCV antibody testing?*	K.Q.3.a. What is the effect of DAA treatment on HCV viral load?*
By risk groups?	 K.Q.2.b. What are harms of hepatitis C screening?[†] K.Q.2.c. What proportion of people who 	K.Q.3.b. What is the effect of DAA treatment on morbidity (including cirrhosis and hepatocellular carcinoma)?
	screen positive for HCV infection are linked to care? ^{§¶}	K.Q.3.c. What is the effect of DAA treatment on mortality (HCVspecific and allcause)?*
		K.Q.3.d. What are the adverse effects of DAA treatment?*

Abbreviations: HCV = hepatitis C virus; DAA = direct acting antiviral. * Previously welldescribed and therefore not included in this review. [†] U.S. and nonU.S. studies included. [§] U.S. studies only included.

¹ For all adult review only.**SUPPLEMENTARY TABLE 2. Search strategy for all adult literature review** Search Query: Does universal screening for hepatitis C virus infection among adults aged 18 years and older, compared to riskbased screening, reduce morbidity and mortality?

screening, reduce morbidity	and mortality?		
Database	Strategy	Run Date	Records
Medline (OVID) 1946–	 (exp Hepatitis C/ AND *Mass Screening/) OR ((Hepatitis C ADJ5 screen*) OR (hepC ADJ5 screen*) OR (HCV ADJ5 screen*) OR (Hepatitis C ADJ5 test*) OR (hepC ADJ5 test*) OR (HCV ADJ5 test*)).ti,ab. OR (*hepatitis C/ AND (screen* OR test*).ti) Limit 2010- ; English 	8/6/2018	3310
Embase (OVID) 1996–	 (exp Hepatitis C/ AND *Mass Screening/) OR ((Hepatitis C ADJ5 screen*) OR (hepC ADJ5 screen*) OR (HCV ADJ5 screen*) OR (Hepatitis C ADJ5 test*) OR (hepC ADJ5 test*) OR (HCV ADJ5 test*)).ti,ab. OR (*hepatitis C/ AND (screen* OR test*).ti) Limit 2010– ; English; Exclude Medline Journals 	8/6/2018	559 - 161 duplicates = 398 unique items
CINAHL (EBSCO)	((MH "Hepatitis C"+) AND (MM "Mass Screening")) OR (("Hepatitis C" N5 screen*) OR (hepC N5 screen*) OR (HCV N5 screen*) OR ("Hepatitis C" N5 test*) OR (hepC N5 test*) OR (HCV N5 test*)) OR ((MM "hepatitis C") AND (TI (screen* OR test*)))Limit 2010– ; exclude Medline records ; English	8/6/2018	210 - 128 duplicates = 82 unique items
Scopus	TITLE-ABS-KEY(("Hepatitis C" W/5 screen*) OR (hepC W/5 screen*) OR (HCV	8/6/2018	1769 - 846 duplicates = 923 unique items

	W/5 screen*) OR ("Hepatitis C" W/5 test*) OR (hepC W/5 test*) OR (HCV W/5 test*)) AND NOT INDEX(medline) Limit 2010– ; English		
Cochrane Library	(("Hepatitis C" NEAR/5 screen*) OR (hepC NEAR/5 screen*) OR (HCV NEAR/5 screen*) OR ("Hepatitis C" NEAR/5 test*) OR (hepC NEAR/5 test*) OR (HCV NEAR/5 test*)):ti,ab Limit 2010– ; English	8/6/2018	250 - 96 duplicates = 154 unique items

Database	Strategy	Run Date	Records
Medline (OVID) 1946–	Hepatitis C OR hepC OR HCV AND Pregnanc* OR pregnant OR maternal AND Screen* OR test*	7/2/2018	592
Embase (OVID) 1947–	Limit 1998– ; Hepatitis C OR hepC OR HCV AND Pregnanc* OR pregnant OR maternal AND Screen* OR test* Limit 1998– ;	7/2/2018	1226 - 464 duplicates = 762 unique items
CINAHL (EBSCO)	"Hepatitis C" OR hepC OR HCV AND Pregnanc* OR pregnant OR maternal AND Screen* OR test* Limit 1998– ; exclude Medline records	7/2/2018	38 - 19 duplicates = 19 unique items
Scopus	TITLE-ABS-KEY(("Hepatitis C" OR hepC OR HCV) AND (Pregnanc* OR pregnant OR maternal) AND (Screen* OR test*)) AND NOT INDEX(medline)	7/2/2018	333 - 216 duplicates = 117 unique items
Cochrane Library	(("Hepatitis C" OR hepC OR HCV) AND (Pregnanc* OR pregnant OR maternal) AND (Screen* OR test*)):ti,ab	7/2/2018	23 - 13 duplicates = 10 unique items

SUPPLEMENTARY TABLE 3. Search strategy for pregnant women literature review Search Query: Does universal screening for hepatitis C virus infection among pregnant women, compared to riskbased screening, reduce

SUPPLEMENTARY TABLE 4. Search strategy for supplementary all adult literature review Search Query: Does universal screening for hepatitis C virus infection among adults aged 18 years and older, compared to riskbased screening reduce morbidity and mortality?

screening, reduce morbidi	ty and mortality?		
Database	Strategy	Records for run date 8/6/2018	Records for run date 11/15/2019
Medline (OVID) 1946–	(exp Hepatitis C/ AND *Mass Screening/) OR ((Hepatitis C ADJ5 screen*) OR (hepC ADJ5 screen*) OR (HCV ADJ5 screen*) OR (HCV ADJ5 screen*) OR (HCV ADJ5 test*) OR (hepC ADJ5 test*) OR (hepC ADJ5 test*) OR (HCV ADJ5 test*)).ti,ab. OR (*hepatitis C/ AND (screen* OR test*).ti) Limit 2010– ; English Update: (201808* OR 201809* OR 201810* OR 201811* OR 201812* OR 2019*).dt	3310	682
Embase (OVID) 1996–	(exp Hepatitis C/ AND *Mass Screening/) OR ((Hepatitis C ADJ5 screen*) OR (hepC ADJ5 screen*) OR (HCV ADJ5 screen*) OR (HCV ADJ5 screen*) OR (HepC ADJ5 test*) OR (hepC ADJ5 test*) OR (HCV ADJ5 test*)).ti,ab. OR (*hepatitis C/ AND (screen* OR test*).ti) Limit 2010– ; English;	559 - 561 duplicates = 398 unique items	247 - 51 duplicates = 196 unique items

	Exclude Medline Journals		
	Update: (201808* OR 201809* OR 201810* OR 201811* OR 201812* OR 2019*).dc		
CINAHL (EBSCO)	 ((MH "Hepatitis C"+) AND (MM "Mass Screening")) OR (("Hepatitis C" N5 screen*) OR (hepC N5 screen*) OR (HCV N5 screen*) OR ("Hepatitis C" N5 test*) OR (hepC N5 test*) OR (hepC N5 test*) OR (HCV N5 test*)) OR ((MM "hepatitis C") AND (TI (screen* OR test*))) Limit 2010– ; exclude Medline records ; English Update: August 2018– current 	210 - 128 duplicates = 82 unique items	105 - 59 duplicates = 46 unique items
Scopus	TITLE-ABS- KEY(("Hepatitis C" W/5 screen*) OR (hepC W/5 screen*) OR (HCV W/5 screen*) OR ("Hepatitis C" W/5 test*) OR (hepC W/5 test*) OR (HCV W/5 test*)) AND NOT INDEX(medline) Limit 2010– ; English	1769 - 846 duplicates = 923 unique items	193 - 129 duplicates = 64 unique items

	Update: August 2018– current		
Cochrane Library	(("Hepatitis C" NEAR/5 screen*) OR (hepC NEAR/5 screen*) OR (HCV NEAR/5 screen*) OR ("Hepatitis C" NEAR/5 test*) OR (hepC NEAR/5 test*) OR (HCV NEAR/5 test*)):ti,ab Limit 2010– ; English Update: August 2018– current	250 - 96 duplicates = 154 unique items	61 - 11 duplicates = 50 unique items

SUPPLEMENTARY TABLE 5. Search strategy for supplementary pregnant women literature review

Search Query: Does universal screening for hepatitis C virus infection among pregnant women, compared to riskbased screening, reduce
morbidity and mortality among mothers and their children?

morbidity and mortality among mothers and their children?								
Database	Strategy	Records for run date 7/2/2018	Records for run date 10/29/2019					
Medline (OVID)	Hepatitis C OR hepC OR	592	69					
1946–	HCV							
	AND							
	Pregnanc* OR pregnant							
	OR maternal							
	AND							
	Screen* OR test*							
	Limit 1998– ; (201807*							
	OR 201808* OR 201809*							
	OR 201810* OR 201811*							
	OR 201812* OR							
	2019*).dt							
Embase (OVID)	Hepatitis C OR hepC OR	1226 - 466 duplicates = 762 unique	155 - 47 duplicates = 108 unique					
1947–	HCV	items	items					
	AND							
	Pregnanc* OR pregnant							
	OR maternal							
	AND							
	Screen* OR test*							
	Limit 1998– ; (201807*							
	OR 201808* OR 201809*							
	OR 201810* OR 201811*							
	OR 201812* OR							
	2019*).dc							
CINAHL (EBSCO)	"Hepatitis C" OR hepC	38 - 19 duplicates = 19 unique items	12 - 8 duplicates = 4 unique items					
	OR HCV							
	AND							
	Pregnanc* OR pregnant							
	OR maternal							

	AND Screen* OR test* Limit 1998– ; exclude Medline records		
Scopus	TITLE-ABS-KEY (("Hepatitis C" OR hepC OR HCV) AND (Pregnanc* OR pregnant OR maternal) AND (Screen* OR test*)) AND NOT INDEX (medline)	333 - 216 duplicates = 117 unique items	21 - 17 duplicates = 4 unique items
Cochrane Library	(("Hepatitis C" OR hepC OR HCV) AND (Pregnanc* OR pregnant OR maternal) AND (Screen* OR test*)):ti,ab	23 - 13 duplicates = 10 unique items	12 - 2 duplicates = 10 unique items

Author, publicatio n year	Years of study; design	Descriptio n	Setting	Anti- HCV tested	Anti- HCV positivity	RNA positivity	Follow-up appt. arranged	Attended follow-up appt.	Treated	Achieved SVR
Abara (1), 2019	2010–2017; Retrospective	Screening among deceased organ donors	Organ Procurement and Transplantation Network	ttsttu	3,725/70,41 4 (5.3%)	1,306/2,378 * (54.9%)		 	IItattu	
Dodd (2), 2016	2011–2012; Surveillance	Routine testing of donated blood supply	American Red Cross; Blood Systems, Inc.; and New York Blood Center supply	All samples tested	2,968/14,78 6,584 (0.02%) [†]					
Dong (3), 2017	2016; Pilot	Pharmacists training to provide HCV point-of-care rapid testing	Community pharmacy, Mission Wellness Pharmacy, San Francisco, California		1/83 (1.2%)					
Hofmeister (4, 5), 2018 [§]	2013–2016; Epidemiologic study		NHANES data and data for populations not represented in NHANES		4,101,200/2 44,869,800 (1.7%)	2,266,700/4, 088,173 (55.5%) [¶]				
Kim (6), 2019	2016–2018; Retrospective	Examining screening rates	Women of reproductive age at safety net hospital in San Francisco	7,406/19, 121 (38.7%)	206/7,406 (2.8%)	105/168 (62.5%)			41	34/41 (82.9%)
Klevens (7), 2016**	2010–2013; Cross-sectional	Laboratory data analysis	Quest Diagnostics laboratory data		352,646/5,6 51,742 (6.2%)	292,681/352 ,646 (83.0%)				
Kugelmas (8), 2017	2015–2016; Prospective	Direct store advertising	45 Walgreen pharmacies in 9 major metropolitan areas		103/1,296 (7.9%)					
Saab (9), 2019	2018; Retrospective	Results of hospital	University of California, Los		238/17,512 (1.4%)	70/190 (36.8%)	53/70 (75.7%)			

SUPPLEMENTARY TABLE 6. Hepatitis C prevalence and linkagetocare, general population

		screenings for HCV	Angeles Health Care System			
Viner (10), 2015 ^{††}	2010–2013; Epidemiologic		Surveillance data from Philadelphia Department of Public Health	13,596/1,58 4,848 (0.9%)	6,383/13,59 6 (47.0%) ^{§§}	

Abbreviations: anti-HCV = hepatitis C virus antibody; HCV = hepatitis C virus; RNA = ribonucleic acid; SVR = sustained virologic response; NHANES = National Health and Nutrition Examination Survey.

* Number testing anti-HCV positive during time period.

[†] RNA positive. [§] Includes incarcerated.

[¶] From Rosenberg et al. (5).
** Both anti-HCV and RNA testing.

^{††} Population estimates used 2010 census data for Philadelphia County, estimated 47,207 with HCV.

Author, publicatio	Years of study;	Descriptio		Anti- HCV	Anti- HCV	RNA	Follow-up appt.	Attended follow-up		Achieved
n year	design	n	Setting	tested	positivity	positivity	arranged	appt.	Treated	SVR
Allison (11), 2016	2014–2015; Cross-sectional	Interview and screening	Birth cohort patients presenting to large public urban ED, Bellevue Hospital Center, New York City	383/915 (41.9%)	28/383 (7.3%)	19/21 (90.5%)	21/19 (>100.0%)	4/19 (21.1%)	1/4 (25.0%)	
Anderson (12), 2017*	2014–2015; Multicenter retrospective cohort	Triage-based screening strategy	Birth cohort and IDU patients presenting to 2 urban EDs: public ED, Highland Hospital, Oakland, California and academic ED, University of Alabama at Birmingham	/55,335	532	301/435 (69.2%)	158/301 (52.5%)	97/158 (61.4%)	24/97 (24.7%)	19/24 (79.2%)
Anderson (13), 2016	2015; Prospective observational pilot	Screening initiative, provider training	IDU patients presenting to publicly-funded urban ED, Alameda Health System, Highland Hospital, Oakland, California	155/14,2 53 (1.1%)	40/155 (25.8%)	22/32 (68.8%)	19/22 (86.4%)	3/19 (15.8%)	1/3 (33.3%)	
Cowan (14), 2018	2012–2013; Randomized controlled trial	Bundled HIV/HCV screening	Inner city medical center, Jacobi Medical Center, Bronx, New York	187/234 (79.9%)	1/187 (0.5%)					
Donnelly	2013–2015;	Opt-out	Urban		1,014/8,742					
$(15), 2016^{\dagger}$	Geospatial	screening	emergency		(11.6%)					

^{§§} Among those with anti-HCV positivity. **SUPPLEMENTARY TABLE 7. Hepatitis C prevalence and linkagetocare, emergency departments**

	analysis		department, University of Alabama, Birmingham,						
Franco (<i>16</i>), 2016	2013–2014; Retrospective cohort	Opt-out screening, LTC coordinator	Alabama Birth cohort patients at academic tertiary care center, University of		473/4,371 (10.8%)	332/402 (82.6%)	148/332 (44.6%)	117/148 (79.1%)	
Hoenig (17), 2019	2017–2018; Pilot study	Opt-out screening	Alabama at Birmingham Birth cohort patients at 2		90/905 (9.9%)	31/61 (50.8%)		13/31 (41.9%)	
	-	program	academic centers in San Diego, California					(11376)	
Hsieh (18), 2016	2013; Seroprevalence study	Excess blood tested for HCV	Urban emergency department, Johns Hopkins Hospital, Baltimore, Maryland	4,713/8,5 82 (54.9%)	652/4,713 (13.8%)	87/100 (87.0%)			
Hsieh (19), 2018	2015–2016; Retrospective cohort	Opt-out screening	Johns Hopkins	299/5,03 9 (5.9%)	6/299 (2.0%)				
Kang (20), 2018	2016; Retrospective cohort study	Opt-out screening	Birth cohort patients, large ED in New Jersey	2,928/14, 000 (20.9%)	192/2,928 (6.6%)	71/167 (42.5%)			
Merchant (21), 2015	2010–2012; Randomized controlled trial		Drug misusing patients at two urban EDs affiliated with medical school in New England, Miriam Hospital and Rhode Island Hospital		5/346 (1.4%)				
Merchant (22), 2014	2011–2012; Randomized		Patients reporting drug	256/470 (54.5%)	7/256 (2.7%)				

	controlled trial		use in 2 urban EDs, Miriam Hospital and Rhode Island Hospital						
Privette (23), 2018 [§]	2016–2017; Prospective	Screening initiative	Participants were Level A and Level B trauma activations, South Carolina		70/1,217 (5.8%)	45 [¶] /70 (64.3%)	40/46 (87.0%)	10/27 (37.0%)	
Schechter- Perkins (24), 2018	2016–2017; Retrospective	EMR prompt, opt-out screening	Urban safety net hospital ED, Boston Medical Center, Massachusetts	3,808/19, 905 (19.1%)	504/3,808 (13.2%)	292/493 (59.2%)	102/292 (34.9%)	66/102 (64.7%)	
Simoncini (25), 2019	2016–2017	Prospective screening of trauma patients with consent	Level 1 trauma center. Philadelphia, Pennsylvania	1,160/1,4 70 (78.9%)	162/1,160 (14.0%)	67/97 (69.1%)	46/67 (68.7%)	55/162 (34.0%)	
Torian (26), 2018	2015; Cross- sectional blinded serosurvey	Excess blood tested for HCV	Large academic tertiary care hospital in poorest county urban county in United States, Bronx, New York	4,989/16, 340 (30.5%)	372/4,989 (7.5%)	167/314 (53.2%)			
Ullo (27), 2019	2018; Retrospective	Screening initiative	Birth cohort patients with ED visits at urban tertiary care hospital in New Jersey	1,007/30 23 (33.3%)	112/1,007 (11.1%)	28/38 (73.6%)			
White (28), 2016	2014–2015; Retrospective cohort	Timestamp analysis	Urban teaching hospital, Highland Hospital, Oakland, California	2,864/69, 639 (4.1%)	272/2,864 (9.5%)				

White (29), 2018	2016–2017; Before-after comparative effectiveness cohort	Screening intervention, EMR prompt	Urban inner-city hospital with high number of low-income and minority patients, Highland Hospital, Oakland, California	2,968/20, 975 (14.2%) 6,972/19, 887 (35.1%)	153/2,968 (5.2%) 525/6,972 (7.5%)
---------------------	--	--	---	--	--

Abbreviations: anti-HCV = hepatitis C virus antibody; HCV = hepatitis C virus; RNA = ribonucleic acid; SVR = sustained virologic response; ED = emergency department; IDU = injection drug use; LTC = linkage to care; EMR = electronic medical record. * Partial overlap with Anderson 2016 (*13*) and Franco 2016 (*16*). [†] 78.8% of tests among birth cohort patients. [§] 16 false-positives.

Author, publicatio	Years of study;	Descriptio		Anti- HCV	Anti- HCV	RNA	Follow-up appt.	Attended follow-up		Achieved
n year	design	n	Setting	tested	positivity	positivity	arranged	appt.	Treated	SVR
Armstrong (<i>30</i>), 2019	2015–2017; Retrospective	Examining effects of e- clinical decision support tool	Urban health system Cook County Health, Illinois	15,630	844/15,630 (5.4%)	347/605 (57.4%)	198/347 (57.1%)		68	
Bakhai (<i>31</i>), 2019*	2015–2017; Prospective	Screening initiative	Academic internal medicine residency program, Buffalo, New York	391/1,29 1 (30.3%)	170/391 (43.5%)	162/170 (95.3%)	114/162 (70.4%)			
Bourgi (<i>32</i>), 2016	2014–2015; Retrospective cohort	EMR prompt	21 internal medicine clinics at large integrated health system, Henry Ford Health System, Southeast Michigan	8,657/40, 561 (21.3%)	109/8,657 (1.3%)	65/69 (94.2%)		51	30 completed	
Brady (<i>33</i>), 2018	2012–2015; Retrospective	Birth-Cohort Evaluation to Advance Screening and Testing of Hepatitis C (BEST-C)	3 medical centers		130	75/118 (63.6%)		73/75 (97.3%)	21/73 (28.8%)	14/21 (66.7%)
Castrejon (34), 2017	Pre: 2014– 2015; Post: 2015–2016; Interrupted time	EMR prompt, care coordinator	Outpatient clinic within large, complex health system with		190/5,676 (3.3%)	40/73 (54.8%)		35/40 (87.5%)		
	series		broad catchment area in Southern California, University of California at Los Angeles		240/13,930 (1.7%)	49/124 (39.5%)		46/49 (93.9%)		
Cole (35),	2013–2015;	Assessment	22 primary care	3,516/32,	565/3,516					

2019	Retrospective	of screening and prevalence	practices in Washington, Wyoming, Alaska, Montana, Idaho	139 (10.9%)	(16.1%)					
Cornett (<i>36</i>), 2018	2016; Retrospective cohort	Opt-out screening, EMR prompt	Large emergency department in tertiary care hospital serving socio- economically diverse patient population, Rutgers, New Jersey		192/2,928 (6.6%)	71/167 (42.5%)				
De la Torre (<i>37</i>), 2019	2016–2017; Retrospective	Screening initiative	Birth cohort and immigrants from countries with endemic HCV	10,726	855/10,726 (8.0%)	646 [†] /855 (75.6%)	436		109 [§]	
Deerin (<i>38</i>), 2018	2014; Pilot study	Surveillance	Washington, D.C.	196	58/196 (29.6%)	29/31 (93.5%)				
Federman (39), 2017	2013–2014; Cluster randomized controlled trial	EMR prompt and provider training	Academically- affiliated primary care practices of Mount Sinai Healthcare in NYC and Long Island	2,995/14, 825 (20.2%) 198/10,7 95 (1.8%)	(2):070 27/8,713 (0.3%) 6/5,438 (0.1%)					
Fitch (<i>40</i>), 2017	2014–2015; Data reported in a letter to the editor	Screening reminder, EMR prompt	2 hospital-based primary care clinics at Wake Forest, North Carolina	854/4,35 5 (19.6%) 1,220/4,9 94 (24.4%) 1,700/5,5 78 (30.5%)	59/480 (12.3%) 218/1,220 (17.9%)					
Geboy (<i>41</i>), 2019	2015–2016; Prospective	Clinical decision support prompt	Largest distributed care delivery network in Maryland and	9,304/80, 556 (11.6%)	353/9,304 (3.8%)	186/311 (59.8%)	161/186 (86.6%)	123/161 (76.4%)	48/123 (39.0%)	42/48 (87.5%)

			Washington, D.C. region, MedStar Health							
Goel (<i>42</i>), 2017	2013–2015; Prospective, stepwise, interventional	HCV screening and LTC initiative, EMR prompt, provider training, data feedback, patient navigator	Two primary care practices affiliated with tertiary care hospital and liver transplant center, Mount Sinai Hospital, New York City	4,419/14, 642 [¶] (30.2%)	147/4,419 (3.3%)	84/134 (62.7%)		60/84 (71.4%)	32/60 (53.3%) initiated; 6 completed	6/6 (100.0%)
Golden (43), 2017	2011–2015; Time series	EMR orders	3 primary care clinic serving low-income patients,	681/3,77 3 (18.0%)	135/681 (19.8%)	97/134 (72.4%)				
			Harborview Medical Center, Seattle, Washington	1,185/3,3 36 (35.5%)	123/1,185 (10.4%)	85/122 (69.7%)				
Hossain (44), 2017**	2013–2015; Cross-sectional	Screening intervention	Outpatient gastroenterology and hepatology clinics, Brooklyn Methodist Hospital, Brooklyn, New York	245/423 (57.9%)	5/245 (2.0%)	2/5 (40.0%)				
Isho (45), 2017	Pilot	Screening and education intervention	Community pharmacy with large urban health center, University of Illinois Hospital and Health Sciences System, Chicago, Illinois	16/50 (32.0%)	0/16 (0.0%)					
Jain (46), 2019 ^{††}	2013–2017; Retrospective	Screening intervention	Safety net hospital, Parkland Health System, Dallas,	9,354/62, 331 (15.0%)	1,542/9,354 (16.5%)	723/968 (74.7%)	373/723 (51.6%) ^{§§}			

Jonas (47),	2014–2015;	Screening	Texas Kaiser		365/11,200	277/365				
2016	Prospective	and LTC initiative, EMR prompt, care coordinator	Permanente Mid- Atlantic States (Maryland, Virginia, and DC)		(3.3%)	(75.9%)				
Kim (<i>48</i>), 2019	2014–2017; Retrospective	Examining cascade of care	Primary care clinics in San Francisco, California	33,213/3 4,810 (95.4%)	4,587/33,21 3 (13.8%)	2,827/4,587 (61.6%) [¶]				634/900 (90.6%)
Konerman (49), 2017	Interrupted time series	EMR prompt	13 primary care clinic locations within 30mile radius of Ann Arbor, Michigan	1,705/22, 488 (7.6%) 19,847/2 7,789	36/1,705 (2.1%) 178/19,847 (0.9%)	23/31 (74.2%) 56***/168 (33.3%)	53/53 (100.0%)	46/53 (86.8%)	20/36 initiated; 9	9
Laufer (<i>50</i>), 2015	2011–2014; Retrospective case control	Quality improvement initiative,	Military retirees presenting to internal medicine	(71.4%)	5/221 (2.3%)	4/5 (80.0%)			completed	
	case control	screening intervention	clinic		10/478 (2.1%)	2/10 (20.0%)				
MacLean (51), 2018	2013–2016; Retrospective cohort	EMR prompt	Primary care at academic medical center serving urban and rural population, University of Vermont Medical Center	9,302/25, 071 (37.1%)	319/9,302 (3.4%)			164/182 (90.1%)		
Madhani (<i>52</i>), 2017	2013–2016; Retrospective chart review	Screening intervention, conferences, reminders, posters	Primary care at academic continuity practice, Waterbury,	13/200 (6.5%) 13/100 (13.0%)	0/13 (0.0%) 1/13 (7.7%)					
Rowan (53), 2019 ^{†††}	2013–2014; Prospective	Screening initiative	Connecticut 2 urban community health centers near Denver, Colorado	3,126/3,9 40 (79.3%)	329/3,126 (10.5%)	289/421 (68.6%)	137/289 (47.4%)		80	65/80 (81.2%) ^{§§§}

Sears (54), 2013	2010–2011; Feasibility pilot study		Patients with and without risk factors scheduled for an outpatient colonoscopy with Scott & White Healthcare in Temple, Texas	346/483 (71.6%)	4/346 (1.2%)	1/4 (25.0%)	1/1 (100.0%)	
Shahnazarian (55), 2015 ¹¹¹	2013–2015; Retrospective	EMR prompt	New York Methodist Hospital primary care and outpatient clinics and inpatients, Brooklyn, New York	9,551/15, 965 (59.8%)	335/9,551 (3.5%)			
Sidlow (56), 2015	2014; Retrospective cohort	EMR prompt	Primary care clinics of North Bronx Healthcare Network	851/7,76 4 (11.0%) 3,012/6,5 77 (45.8%)	21/851 (2.5%) 26/3,012 (0.9%)			
Turner (57), 2015	2012–2014; Prospective cohort	Promotora (community health worker) assist with LTC	Inpatients at hospital serving high indigent and Hispanic population, University Hospital in San Antonio	4,582/5,0 87 (90.1%)	316/4,582 (6.9%)	175/287 (61.0%)	65/175 (37.1%)	14/65 (21.5%)
Yartel (58), 2018	2012–2014; Three randomized controlled trials	Trial 1) Repeated mailings, outreach	Primary care clinics part of academic medical centers: Trial 1) Henry Ford, Michigan	805/2,99 3 (26.9%) 84/5,999 (1.4%)	8/805 (1.0%) 2/84 (2.4%)			
		Trial 2) EMR prompt	[9 clinics] Trial 2) Mt. Sinai, New York [10 clinics]	757/8,92 8 (30.9%) 197/5,54	27/2,757 (1.0%) 6/197			

		-				-		
				7 (3.6%)	(3.0%)			
		Trial 3)	Trial 3)	2,763/4,3	34/2,736			
		Direct patient	University of	07	(1.2%)			
		solicitation	Alabama,	(63.5%)	× /			
			Birmingham,	92/4,566	5/92 (5.4%)		· ·	
			Alabama [4	(2.0%)				
			clinics])	(,)				
Yeboah-	2010–2015;	Medical	North Shore	11,976/1	670/11,976			
Korang (59),	Retrospective	record review	University	06,753	(5.6%)			
2018	1		Health System,	(11.2%)	× /			
			Illinois					
Younossi	2014–2015;	Pilot	Five		10/2,000	4/9 (44.4%)	4/4	
(60), 2016	Prospective	screening	gastroenterology		(0.5%)	· · · ·	(100.0%)	
())		program	centers close to		()		(
		1 0	large					
			metropolitan					
			areas on East					
			Coast					

Abbreviations: anti-HCV = hepatitis C virus antibody; HCV = hepatitis C virus; RNA = ribonucleic acid; SVR = sustained virologic response; EMR

= electronic medical record; LTC = linkage to care.

* Numbers did not reconcile.

[†] Not RNA-negative or expired.

[§] Of those linked.

[¶] Of 14,642, 5,541 previously screened and therefore 9,101 eligible.

** Extended birth cohort members, age 40-75 years.

^{††} Pre- and post- combined.

^{§§} Not defined.

[¶] Among anti-HCV positives; 1,484 had RNA testing without anti-HCV testing.

*** 3 not confirmed on subsequent testing.

^{†††} Includes 92 persons not tested but self-reporting anti-HCV positivity.

^{§§§} 15 without SVR includes 13 followed for less than 12 weeks and 2 who did not return for testing.

Author,	Years of			Anti-	Anti-		Follow-up	Attended		
publicatio	study;	Descriptio	a.	HCV	HCV	RNA	appt.	follow-up		Achieved
n year	design	n	Setting	tested	positivity	positivity	arranged	appt.	Treated	SVR
Arnold (<i>61</i>), 2018	Prospective	Mixed- methods	African American adults with serious mental illness, Mid-Atlantic	/170	31/170 (18.2%)		24		18/24 (75.0%)	
Burrell (62),	2017–2018;	EMR	Persons at risk	1,895/6,5	31/1,895		100.0%			
2018	Retrospective	protocol	for HCV in urgent care settings, Appalachia	09 (29.1%)	(1.6%)					
Calner (63),	2016–2018;	Screening	Potentially atrisk	28,435/1,	3,047/28,43	1,637/2,991		582	275	147/199
2019	Observational cohort	and treatment initiative	persons at safety net, urban, academic facility, Boston Medical Center	150,000 (2.5%)	5 (10.7%)	(54.7%)			initiated; 199 completed	(73.9%)
Campbell (64), 2018	2015–2016; Prospective pilot study	Screening offered during outpatient endoscopy	Patients with risk factors presenting for outpatient endoscopy at an urban safety net hospital, Highland Hospital, Oakland California	318/596 (53.4%)	14/318 (4.4%)	6/11 (54.5%)		6/6 (100%)		
Coyle (65), 2019	2012–2016; Retrospective	Testing and LTC initiative	Others at potential risk at 5 federally- qualified health centers, Philadelphia, Pennsylvania	14,790 / 25,853 (57.2%)	1,323/14,79 0 (8.9%)	885/1,272 (69.6%)	732/885 (82.7%)	614/732 (83.9%)	133/614 (21.7%) initiated;106 /614 (17.3%) completed	71/106 (67.0%)*

^{¶¶} From supplement.SUPPLEMENTARY TABLE 9. Hepatitis C prevalence and linkagetocare, others/multiple

De la Torre (<i>66</i>), 2017	2016; Descriptive	Audio Computer- assisted screening interview (Audio- CASI) Risk assessment	Academic charity care internal medicine clinic and urban federally- qualified health center (FQHC)	254/1,93 2 (13.2%)	24/254 (9.4%) 671/8,481 (7.9%)	16/24 (66.7%) 221/269 (82.2%)				
		kiosk, patient navigator, and EMR prompt								
Duinnick (67), 2019	2012–2016; Retrospective	EMR review	Patients diagnosed with hepatocellular carcinoma at Grady Memorial Hospital, Atlanta, Georgia		102/134 (76.1%)					
Falade- Nwulia (68), 2016	2014; Prospective	Promotional fliers	Six senior centers, Baltimore, Maryland		14/149 (9.4%)	12/14 (85.7%)	3/12 (25.0%)			
Fill (<i>69</i>), 2018	2016; Prospective and nested case- control	Routine opt- out and opt-in HCV testing	Health department screening program in STI, family planning clinics, and addiction treatment facilities, Eastern Tennessee		397/4,753 (8.4%)	294/397 (74.1%)				
Ford (<i>70</i>), 2018	2012–2013; Prospective	Check HepC Program, screening and LTC initiative, targeted outreach and patient navigators	12 federally- qualified health centers, SEPs, New York City		880/4,751 (18.5%)	512/678 (75.5%)		435/512 (85.0%)	14 initiated; 6 completed	6/6 (100.0%)

Gade (71), 2018	Retrospective observational		Adults with congenital heart disease who underwent cardiac surgery before 1992, Greenville Hospital System, Greenville, South Carolina	116/188 (61.7%)	12/116 (10.3%)	11/12 (91.7%)	11/11 (100.0%)	11/11 (100.0%)	5/11 (45.5%)	5/5 (100.0%)
Irvin (72), 2016	2014–2015; Cross-sectional	Community- academic partnership to promote testing	Testing efforts were pursued through advertising at community block parties, intersections frequented by PWID, shelters, etc. at 35 locations in Baltimore City		49/325 (15.1%)					
Lier (73), 2019 [†]	2016–2018; Retrospective	Determining HCV prevalence	Birth cohort and IDU at suburban medical center	1	1,017/27,11 9 (3.8%)	437/929 (47.0%)	153		53	
McClure (74), 2019 [§]	2011–2015; Retrospective	Examining the relationship between illicit drug use and HCV	Others at risk (Note: lab results from people with both urine screen and HCV results)		4,628/18,41 0 (25.1%)					
Mera (75), 2016	2012–2015	EMR prompt, provider training, ECHO clinics, registry, outreach	Cherokee Nation Health Services	16,772/9 2,012 (18.2%)	715/16,772 (4.3%)	388/488 (79.5%)			223/388 (57.5%) initiated;201 /388 (51.8%) completed	180/201 (89.6%)
Morano (76), 2014	2012–2013;	Mobile medical clinic	Mobile medical clinic clients in poor city, New Haven,	438/1,34 5 (32.6%)	27/438 (6.2%)	27/27 (100.0%)		9/17 (52.9%)		

			Connecticut						
Morse (77), 2017	2012–2014; Prospective	Collaborative community post- incarceration program	Women recently released from incarceration	60/87 (69.0%)	12/60 (20.0%)				
Patil (78), 2016	2014–2015; Numbers reported via journal commentary	Screening initiative	94 local health units targeting IDUs and birth cohort patients in Arkansas		325/3,544 (9.2%)				
Ramirez (79), 2016 [¶]	2012–2014; Retrospective	HepTLC initiative	At-risk population, 206 testing sites in 17 states		7,580/57,57 0 (13.2%)	3,449/4,765 (72.4%)	2,624/3,449 (76.1%)	1,509/2,624 (57.5%)	
Robinson (80), 2018**	2014–2015; Retrospective	Evaluation for patients with cirrhosis	Patients with cirrhosis at an urban safety net hospital, California		47/157 (29.9%)				
Takeuchi (81), 2015	2010–2013; Retrospective	Screening those with risk factors	Hawaii's health department; community health sites		508/8,588 (5.9%)				
Trooskin (82), 2015	2012–2014; Prospective	Screening and LTC initiative, patient navigators	Mobile medical unit, Philadelphia, Pennsylvania		52 ^{††} /1,301 (4.0%)	36/42 (85.7%)	23/36 (63.9%)	21/23 (91.3%)	12
Zaller (<i>83</i>), 2016	2010–2014; Pilot study	Screening and LTC initiative	Persons on probation or parole, Providence and Pawtucket, Rhode Island		12/130 (9.2%)	2/4 (50.0%)	2/2 (100.0%)	0/2 (0.0%)	

Abbreviations: anti-HCV = hepatitis C virus antibody; HCV = hepatitis C virus; RNA = ribonucleic acid; SVR = sustained virologic response; EMR = electronic medical record; STI = sexually transmitted infection; SEP = syringe exchange program; IDU = injection drug use; ECHO = Extension for Community Healthcare Outcomes; HepTLC = Hepatitis Testing and Linkage to Care initiative.

* 77 assessed for SVR.

[†] LTC definition not provided.

[§] Results include persons with urine screen.

[¶] An additional 7,146 RNA tests conducted without prior anti-HCV testing. ** 47 with chronic HCV infection.

Author, publicatio n year	Years of study; design	Descriptio n	Setting	Anti- HCV tested	Anti- HCV positivity	RNA positivity	Follow-up appt. arranged	Attended follow-up appt.	Treated	Achieved SVR
Aronson (84), 2017	2016; Feasibility pilot study	Tablet computer based educational intervention	SEP clients, Bronx, New York	10/10 (100.0%)	2/10 (20.0%)					
Burton (85), 2019	2014–2018; Retrospective	Screening intervention	G.V. (Sonny) Montgomery Veteran's Administration residential substance use disorder treatment center, Southeastern United States	582/597 (97.5%)	74/582 (12.7%)	74/74 (100.0%)	74/74 (100.0%)		51/67 (76.1%) initiated	41/51 (80.4%)
Des Jarlais (86), 2018	2011–2015; Cross-sectional	Geographic hotspot identification	NYC drug detoxification and methadone maintenance programs, Mount Sinai, Beth Israel		493/910 (54.2%)					
Des Jarlais (87), 2019	2016–2018; Prospective	Examining outcomes among PWID in drug treatment	Drug treatment programs at Mount Sinai Beth Israel, New York City	134	79/134 (59.0%)					
Jordan (88), 2015	2010–2013; Cross-sectional	Survey	Detoxification program or MMT program, New York City		536/826 (64.9%)					
Neaigus (<i>89</i>), 2017	2012; Cross- sectional		National HIV Behavioral Surveillance System, New York City	483/525 (92.0%)	324/483 (67.1%)					
Quinn (90), 2019	2014–2016	Risk knowledge scale	Young opioid users in New York City		105/539 (19.5%)					

TT 4	persons previously engaged in care.	SUPPLEMENTARY TABLE 10. Hej	patitis C	prevalence and linkagetocare, p	persons who use drug	gs
------	-------------------------------------	-----------------------------	-----------	---------------------------------	----------------------	----

Stockman (91), 2014	2012–2013; Pilot study	Rapid point- of-care screening initiative	4 community- based organizations for PWUD in Wisconsin		246/1,255 (19.6%)	128/183 (69.9%)
Talal (92), 2017	2012–2013; Prospective	Assess HCV core antigen	Opioid agonist therapy program, West Harlem, New York		65/109 (59.6%)	48*/65 (73.8%)
Tsui (93), 2019	2015; Cross- sectional		National HIV Behavior Surveillance System, Seattle metropolitan area	513/535 (95.9%)	338/513 (65.9%)	
Zibbell (94), 2014	2012; Cross- sectional	Screening initiative	PWID recruited from a community- based AIDS organization, residing in Cortland County (rural), New York	100/123 (81.3%)	34/100 (34%)	

Abbreviations: anti-HCV = hepatitis C virus antibody; HCV = hepatitis C virus; RNA = ribonucleic acid; SVR = sustained virologic response; SEP = syringe exchange program; PWID = persons who inject drugs; MMT = methadone maintenance treatment; PWUD = persons who use drugs.

Author,	Years of			Anti-	Anti-		Follow-up			
publicatio	study;	Descriptio		HCV	HCV	RNA	appt.	follow-up		Achieved
n year	design	n	Setting	tested	positivity	positivity	arranged	appt.	Treated	SVR
Falade-	2013–2014;	Care	2 STI clinics,	2,681/6,2	189/2,681	155/185	132/155	81/132		
Nwulia (95),	Cross-sectional	coordinator	Baltimore City	90	(7.0%)	(83.8%)	(85.2%)	(61.4%)		
2016			Health	(42.6%)						
		-	Department		0.1.1/0.57					
Feldman	2014–2015;	Free	Community		21*/357					
(96), 2017	Cross-sectional	screening	health center,		(5.9%)					
			STI clinic Miami, Florida							
Jewett (97),	2012; Cross-	Staff training	STI and HIV	876/926	33/876	21/32				
2013	sectional	Starr training	testing facility,	(94.6%)	(3.8%)	(65.6%)				
2015	Sectional		Denver Metro	() 1.070)	(5.670)	(00.070)				
			Health Clinic							
Kalichman	2012–2014;	Screened as	Receiving ART		131/678					
(98), 2015	Cross-sectional	part of study	in Atlanta,		(19.3%)					
			Georgia							
Moss (99),	2011–2012;	No-cost, opt-	AIDS	326/2,98	4/326					
2014	Retrospective	in testing	community-	8	(1.2%)					
			based	(10.9%)						
			organization							
			catering to minority MSM,							
			Miami, Florida							
Radwan	2014–2015;	HIV infected	12 sites of HIV	22,632/2	7,447/22,63	4,305/7,047			387	277/291§
$(100), 2019^{\dagger}$	Retrospective	patients	research network	9,071	2 (32.9%)	(61.1%)			507	(95.2%)
(100), 2019	cohort study	screened for	(3 regions of	(77.9%)	= (0=.370)	(011170)				(30.270)
		HCV	U.S.)	()						
Raymond	2011; Cross-		National HIV		21/466					
(101), 2012	sectional		Behavioral		(4.5%)					
			Surveillance							
			System, San							
			Francisco,							
			California			10/00				
Tieu (<i>102</i>),	2010–2013;		MSM residing in		29/1,028	12/29				
2018	Cross-sectional		New York City		(2.8%)	(41.4%)				

* 1 with negative anti-HCV.SUPPLEMENTARY TABLE 11. Hepatitis C prevalence and linkagetocare, persons with HIV or sexual risk

Abbreviations: anti-HCV = hepatitis C virus antibody; HCV = hepatitis C virus; RNA = ribonucleic acid; SVR = sustained virologic response; STI

= sexually transmitted infection; ART = antiretroviral therapy; MSM = men who have sex with men.

* Confirmed by RNA testing.

 † 2,179 at sites with prescription data.

Author, publicatio n year	Years of study; design	Descriptio n	Setting	Anti- HCV tested	Anti- HCV positivity	RNA positivity	Follow-up appt. arranged	Attended follow-up appt.	Treated	Achieved SVR
Ma (<i>103</i>), 2015	2010–2011; Prospective	HCV educational program	7 Vietnamese community organizations, Pennsylvania and New Jersey	255/309 (82.5%)	19/255 (7.5%)					
Saab (<i>104</i>), 2018	Cross-sectional	Screening opportunity	7 houses of worship with large numbers of Egyptian immigrants in Southern California		11/326 (3.4%)	9/11 (81.8%)				
Strong (105), 2015	2011; Cross- sectional	Free testing was offered	Vietnamese health fair in the Baltimore- Washington metropolitan area		29/617 (4.7%)					

[§] Tested for SVR.SUPPLEMENTARY TABLE 12. Hepatitis C prevalence and linkagetocare, immigrants

	Years of					
Author,	study;				AntiHCV	
publication year	design	Description	Setting	Anti-HCV tested	positivity	RNA positivity
Bell (106), 2019	2013–2018; Retrospective cohort	Analysis of infants with neonatal abstinence syndrome	Tertiary care center in Southern Maine	536/769 (69.7%)	257/536 (48.0%)	
Berkley (107), 2008	2000–2006; Retrospective	Comparison of HCV- infected and uninfected pregnancies	Hospital drug dependence and treatment program, Milagro Clinic, University of New Mexico	300/351 (85.5%)	159/300 (53.0%)	16/26 (61.5%)
Boudova (108), 2018	2016; Retrospective	Secondary data analysis using EMR	University of Maryland Medical Center, Baltimore	100/1,426 (7.0%)	10/100 (10.0%)	
Brogly (109), 2018	2015–2016; Prospective cohort	Project RESPECT (Recovery-Empowerment- Social Services-Prenatal Care-Education- Community-Treatment)	Obstetrics addiction recovery clinic at urban safety net hospital, Boston, Massachusetts		80/113 (70.8%)	
Chappell (110), 2018	2006–2014; Retrospective cohort	Infant records linked to HCVinfected mothers, billing codes	Large tertiary care referral hospital, Magee Women's Hospital, University of Pittsburgh Medical Center		1,043/87,924 (1.2%)	
Ellington (111), 2015	2002–2010; Data analysis	Hospital discharge data	Nationwide Inpatient Sample (HCUP)		70,367/41,479,358* (0.2%)	
Epstein (112), 2018	2006–2015; Cohort	Project RESPECT (Recovery-Empowerment- Social Services-Prenatal Care-Education- Community-Treatment)	Women with diagnosis of opioid use disorder, Boston Medical Center, Boston, Massachusetts	744/879 (84.6%)	510/744 (68.6%)	261/369 (70.7%)
Gowda (113), 2018 [†]	2012–2015; Data analysis	Surveillance and birth certificate data match	Ohio		2,151/140,127 (1.5%)	
Jessop (114), 2005	2000–2001; Chart abstraction	Chart abstraction	Probability sample of Philadelphia births	27/550 (4.9%)	3/27 (11.1%)	
Ko (115), 2019	2000–2015; Data analysis	Delivery hospitalizations	Nationwide Inpatient Sample (HCUP)		11,615/2,860,110 (0.4%)	
Koneru (116), 2016	2011–2014; Data analysis	Birth certificate data	Kentucky and United States		KY: 1.6% US: 0.3%	

Abbreviations: anti-HCV = hepatitis C virus antibody; HCV = hepatitis C virus; RNA = ribonucleic acid; SVR = sustained virologic response.**SUPPLEMENTARY TABLE 13. Hepatitis C prevalence among pregnant women**

Krans (117), 2016	2009–2012; Retrospective cohort	EMR data abstraction	Women on opioid maintenance therapy, large tertiary care referral hospital in metropolitan area, Magee Women's Hospital, University of Pittsburgh Medical Center	611 [§] /791 (77.2%)	369/611 (60.4%)	
Kuncio (118), 2016	2011–2013; Data analysis	Surveillance and birth certificate data match	Philadelphia residents		568/55,623 (1.0%)	
Lazenby (119), 2019	2013–2016; Retrospective	Chart review	Academic obstetric clinic, Medical University of South Carolina	123/16,918 (0.7%)	38/123 (30.9%)	
Ly (<i>120</i>), 2017	2011–2014; Data analysis	Quest Diagnostics Health Trends national database	Nationwide laboratory data		4,232/581,255 (0.7%)	
McDowell (121), 2019	2015–2018; Retrospective cohort	Study of women with antenatal exposure to buprenorphine	Maternal opioid use disorder recovery program, Indiana University School of Medicine		1031/266 (38.7%)	
Nolen (122), 2019	2013–2016; Retrospective analysis	EMR data abstraction	Obstetrics clinic and Alaska Native Tribal Health System referral hospital, Alaska	1,356/2,856 (47.5%)	62/1,356 (4.6%)	38/62 (61.3%)
Nolen (<i>123</i>), 2019	2003–2015; Data analysis	Birth certificate and Indian Health Service data	American Indian and Alaska native women		AI/AN: 398/33,434 (1.19%) NonAI/AN: 11,660/3,266,257 (0.36%) IHS: 216/23,374 (0.92%)	
Page (124), 2017	Secondary analysis of laboratory results	Two prospective cohort studies	Prenatal clinic for women with substance use, Milagro Clinic, University of New Mexico	178/190 (93.7%)	95/178 (53.3%)	71/92 (77.2%)
Patrick (125), 2017	2009–2014; Data analysis	Birth certificate data	Tennessee and United States		TN: 10.1 per 1,000 live births US: 3.4 per 1,000 live births	
Salemi (126), 2017	1998–2011; Retrospective, cross-sectional	Delivery hospitalization	Nationwide Inpatient Sample (HCUP)		62,629/52,807,699 (0.1%)	

	analysis				
Salihu (<i>127</i>), 2012	1998–2007; Population- based retrospective cohort	Surveillance-hospital discharge data linked to birth records	All Florida singleton live births		1,023/1,700,734 (0.1%)
Schillie (128), 2018	2011–2016; Data analysis	Birth certificate and commercial laboratory data	United States	13.4%	14,417/3,823,723 (0.38%)
Snodgrass (129), 2018	2015; Surveillance and birth certificate data match	Surveillance and birth certificate data match	Oregon		294/44,712 (0.7%)
Waruingi (130), 2015	2012; Prospective observational study	Comparison of risk-based vs. universal screening	Metro Health Medical Center, Case Western Reserve University; Cleveland, Ohio	220/419 (47.7%)	7/220 (3.2%)
Watts (131), 2017	2011–2015; Data analysis	Surveillance data linked to Medicaid data	Wisconsin Medicaid recipients		608/146,267 (0.4%)

Abbreviations: anti-HCV = hepatitis C virus antibody; HCV = hepatitis C virus; RNA = ribonucleic acid; EMR = electronic medical records; HCUP

= healthcare cost and utilization project; AI/AN = American Indian/Alaska Native; HIS = Indian Health Service.

* Number of hospital admissions

[†] RNA positivity reported in study but not included as surveillance data may under-represent RNA negative results.

[§] HCV screening defined as documentation of anti-HCV test or prior discussion regarding known HCV diagnosis.

[¶] All with HCV RNA positivity.References

- 1. Abara WE, Collier MG, Moorman A, et al. Characteristics of deceased solid organ donors and screening results for hepatitis B, C, and human immunodeficiency viruses United States, 2010–2017. MMWR Morb Mortal Wkly Rep 2019;68:61–6. https://doi.org/10.15585/mmwr.mm6803a2
- 2. Dodd RY, Notari EP, Nelson D, et al. Development of a multisystem surveillance database for transfusion-transmitted infections among blood donors in the United States. Transfusion 2016;56:2781–9. <u>https://doi.org/10.1111/trf.13759</u>
- 3. Dong BJ, Lopez M, Cocohoba J. Pharmacists performing hepatitis C antibody point-of-care screening in a community pharmacy: A pilot project. J Am Pharm Assoc 2017;57:510–5. <u>https://doi.org/10.1016/j.japh.2017.04.463</u>
- 4. Hofmeister MG, Rosenthal EM, Barker LK, et al. Estimating prevalence of hepatitis C virus infection in the United States, 2013–2016. Hepatology 2019;69:1020–31. https://doi.org/10.1002/hep.30297
- 5. Rosenberg ES, Rosenthal EM, Hall EW, et al. Prevalence of hepatitis C virus infection in US states and the District of Columbia, 2013 to 2016. JAMA Netw Open 2018;1:e186371. https://doi.org/10.1001/jamanetworkopen.2018.6371
- 6. Kim NJ, Holguin D, Bush D, Khalili M. Hepatitis C screening in an underserved U.S. cohort of reproductive age women. Hepatol Commun 2019;3:1183–90. <u>https://doi.org/10.1002/hep4.1401</u>
- 7. Klevens RM, Canary L, Huang X, et al. The burden of hepatitis C infection-related liver fibrosis in the United States. Clin Infect Dis 2016;63:1049–55. <u>https://doi.org/10.1093/cid/ciw468</u>
- 8. Kugelmas M, Pedicone LD, Lio I, Simon S, Pietrandoni G. Hepatitis C point-of-care screening in retail pharmacies in the United States. Gastroenterol Hepatol 2017;13:98–104. <u>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5402690/</u>
- 9. Saab S, Challita YP, Najarian LM, Guo R, Saggi SS, Choi G. Hepatitis C screening: barriers to linkage to care. J Clin Transl Hepatol 2019;7:226–31. <u>https://doi.org/10.14218/JCTH.2018.00063</u>
- 10. Viner K, Kuncio D, Newbern EC, Johnson CC. The continuum of hepatitis C testing and care. Hepatology 2015;61:783–9. https://doi.org/10.1002/hep.27584
- 11. Allison WE, Chiang W, Rubin A, et al. Hepatitis C virus infection in the 1945–1965 birth cohort (baby boomers) in a large urban ED. Am J Emerg Med 2016;34:697–701. <u>https://doi.org/10.1016/j.ajem.2015.12.072</u>
- 12. Anderson ES, Galbraith JW, Deering LJ, et al. Continuum of care for hepatitis C virus among patients diagnosed in the emergency department setting. Clin Infect Dis 2017;64:1540–6. <u>https://doi.org/10.1093/cid/cix163</u>
- 13. Anderson ES, Pfeil SK, Deering LJ, Todorovic T, Lippert S, White DA. High-impact hepatitis C virus testing for injection drug users in an urban ED. Am J Emerg Med 2016;34:1108–11. <u>https://doi.org/10.1016/j.ajem.2016.03.004</u>
- 14. Cowan E, Herman HS, Rahman S, et al. Bundled HIV and hepatitis C testing in the emergency department: a randomized controlled trial. West J Emerg Med 2018;19:1049–56. <u>https://doi.org/10.5811/westjem.2018.8.37827</u>
- 15. Donnelly JP, Franco RA, Wang HE, Galbraith JW. Emergency department screening for hepatitis C virus: geographic reach and spatial clustering in central Alabama. Clin Infect Dis 2016;62:613–6. <u>https://doi.org/10.1093/cid/civ984</u>
- 16. Franco RA, Overton ET, Tamhane AR, et al. Characterizing failure to establish hepatitis C care of baby boomers diagnosed in the emergency department. Open Forum Infect Dis 2016;3:ofw211. <u>https://doi.org/10.1093/ofid/ofw211</u>

- 17. Hoenigl M, Mathur K, Blumenthal J, et al. Universal HIV and birth cohort HCV screening in San Diego emergency departments. Sci Rep 2019;9:14479. <u>https://doi.org/10.1038/s41598-019-51128-6</u>
- 18. Hsieh YH, Rothman RE, Laeyendecker OB, et al. Evaluation of the Centers for Disease Control and Prevention recommendations for hepatitis C Virus testing in an urban emergency department. Clin Infect Dis 2016;62:1059–65. <u>https://doi.org/10.1093/cid/ciw074</u>
- 19. Hsieh YH, Patel AV, Loevinsohn GS, Thomas DL, Rothman RE. Emergency departments at the crossroads of intersecting epidemics (HIV, HCV, injection drug use and opioid overdose) estimating HCV incidence in an urban emergency department population. J Viral Hepat 2018;25:1397–1400. <u>https://doi.org/10.1111/jvh.12948</u>
- 20. Cornett JK, Bodiwala V, Razuk V, Shukla D, Narayanan N. Results of a hepatitis C virus screening program of the 1945–1965 birth cohort in a large emergency department in New Jersey. Open Forum Infect Dis 2018;5. <u>https://doi.org/10.1093/ofid/ofy065</u>
- 21. Merchant RC, DeLong AK, Liu T, Baird JR. Factors influencing uptake of rapid HIV and hepatitis C screening among drug misusing adult emergency department patients: implications for future HIV/HCV screening interventions. AIDS Behav 2015;19:2025–35. https://doi.org/10.1007/s10461-015-1103-1
- 22. Merchant RC, Baird JR, Liu T, Taylor LE, Montague BT, Nirenberg TD. Brief intervention to increase emergency department uptake of combined rapid human immunodeficiency virus and hepatitis C screening among a drug misusing population. Acad Emerg Med 2014;21:752–67. <u>https://doi.org/10.1111/acem.12419</u>
- 23. Privette AR, White B, Ferguson PL, Norcross ED, Richey LE. A different form of injury prevention: successful screening and referral for human immunodeficiency virus and hepatitis C virus in a trauma population. J Trauma Acute Care Surg 2018;85:977–83. https://doi.org/10.1097/TA.00000000001991
- 24. Schechter-Perkins EM, Miller NS, Hall J, et al. Implementation and preliminary results of an emergency department nontargeted, opt-out hepatitis C virus screening program. Acad Emerg Med 2018;31:31. <u>https://doi.org/10.1111/acem.13484</u>
- 25. Simoncini GM, Oyola-Jimenez J, Singleton D, Volgraf J, Ramsey FV, Goldberg A. HIV and HCV screening among trauma patients. Int J STD AIDS 2019;30:663–70. <u>https://doi.org/10.1177/0956462419829590</u>
- 26. Torian LV, Felsen UR, Xia Q, et al. Undiagnosed HIV and HCV infection in a New York City emergency department, 2015. Am J Public Health 2018;108:652–8. <u>https://doi.org/10.2105/AJPH.2018.304321</u>
- 27. Ullo M, Sugalski G. Electronic health record triggered hepatitis C screening in the ED. Am J Emerg Med. [Letter]. 2019;27:27. https://doi.org/10.1016/j.ajem.2019.03.043
- 28. White DA, Anderson ES, Pfeil SK, Deering LJ, Todorovic T, Trivedi TK. Hepatitis C virus screening and emergency department length of stay. PLoS ONE [Electronic Resource]. 2016;11(10):e0164831. <u>https://doi.org/10.1371/journal.pone.0164831</u>
- 29. White DAE, Todorovic T, Petti ML, Ellis KH, Anderson ES. A comparative effectiveness study of two nontargeted HIV and hepatitis C virus screening algorithms in an urban emergency department. Ann Emerg Med 2018;21:21. https://doi.org/10.1016/j.annemergmed.2018.05.005
- 30. Armstrong H, Gonzalez-Drigo M, Norels G, et al. Electronic clinical decision support intervention to increase hepatitis C screening and linkage to care among baby boomers in urban safety net health systems. Popul Health Manag 2019;08:08. https://doi.org/10.1089/pop.2019.0105

- 31. Bakhai S, Nallapeta N, El-Atoum M, Arya T, Reynolds JL. Improving hepatitis C screening and diagnosis in patients born between 1945 and 1965 in a safety-net primary care clinic. BMJ Open Qual 2019;8(3):e000577. <u>https://doi.org/10.1136/bmjoq-2018-000577</u>
- **32.** Bourgi K, Brar I, Baker-Genaw K. Health disparities in hepatitis C screening and linkage to care at an integrated health system in southeast Michigan. PLoS ONE 2016;11(8):e0161241. <u>https://doi.org/10.1371/journal.pone.0161241</u>
- 33. Brady JE, Vellozzi C, Hariri S, et al. Hepatitis C care cascade among persons born 1945–1965: 3 medical centers. Am J Manag Care 2018;24:421–7.
- 34. Castrejon M, Chew KW, Javanbakht M, Humphries R, Saab S, Klausner JD. Implementation of a large system-wide hepatitis C virus screening and linkage to care program for baby boomers. Open Forum Infect Dis. 2017;4:ofx109. <u>https://doi.org/10.1093/ofid/ofx109</u>
- 35. Cole AM, Keppel GA, Baldwin LM, et al. Room for improvement: rates of birth cohort hepatitis C screening in primary care practices-A WWAMI Region Practice and Research Network Study. J Prim Care Community Health 2019;10:2150132719884298. https://doi.org/10.1177/2150132719884298
- 36. Cornett JK, Bodiwala V, Razuk V, Shukla D, Narayanan N. Results of a hepatitis C virus screening program of the 1945–1965 birth cohort in a large emergency department in New Jersey. Open Forum Infect Dis 2018;5:ofy065. <u>https://doi.org/10.1093/ofid/ofy065</u>
- 37. de la Torre A, Ahmad M, Ayoub F, et al. Electronic health record year and country of birth testing and patient navigation to increase diagnosis of chronic viral hepatitis. J Viral Hepat 2019;26:911–8. <u>https://doi.org/10.1111/jvh.13098</u>
- 38. Deerin JF, Mikre M, Castel AD, Young AT, Kuo I. Using HIV surveillance data for targeted, community-based hepatitis C virus testing among baby boomers in Washington, D.C. J Health Care Poor Underserved 2018;29:964–74. <u>https://doi.org/10.1353/hpu.2018.0072</u>
- **39.** Federman AD, Kil N, Kannry J, et al. An electronic health record-based intervention to promote hepatitis C virus testing among adults born between 1945 and 1965: a cluster-randomized trial. Med Care 2017;55:590–7. <u>https://doi.org/10.1097/MLR.000000000000715</u>
- 40. Fitch DN, Dharod A, Campos CL, Nunez M. Use of electronic health record clinical decision support tool for HCV birth cohort screening. J Viral Hepat [Letter] 2017;24:1076. https://doi.org/10.1111/jvh.12729
- 41. Geboy AG, Nichols WL, Fernandez SJ, Desale S, Basch P, Fishbein DA. Leveraging the electronic health record to eliminate hepatitis C: screening in a large integrated healthcare system. PLoS ONE 2019;14:e0216459. <u>https://doi.org/10.1371/journal.pone.0216459</u>
- 42. Goel A, Sanchez J, Paulino L, et al. A systematic model improves hepatitis C virus birth cohort screening in hospital-based primary care. J Viral Hepat 2017;24:477–85. <u>https://doi.org/10.1111/jvh.12669</u>
- 43. Golden MR, Duchin J, Chew LD, et al. Impact of an electronic medical record-based system to promote human immunodeficiency virus/hepatitis C virus screening in public hospital primary care clinics. Open Forum Infect Dis 2017;4:ofx075. https://doi.org/10.1093/ofid/ofx075
- 44. Hossain N, Puchakayala B, Kanwar P, et al. Risk factor analysis between newly screened and established hepatitis C in GI and hepatology clinics. Dig Dis Sci 2017;62:3193–9. https://doi.org/10.1007/s10620-017-4754-0
- 45. Isho NY, Kachlic MD, Marcelo JC, Martin MT. Pharmacist-initiated hepatitis C virus screening in a community pharmacy to increase awareness and link to care at the medical center. J Am Pharm Assoc (2003). 2017;57(3S):S259–S64. https://doi.org/10.1016/j.japh.2017.03.006
- 46. Jain MK, Rich NE, Ahn C, et al. Evaluation of a multifaceted intervention to reduce health disparities in hepatitis C screening: a pre-post analysis. Hepatology. 2019;70(1):40–50. <u>https://doi.org/10.1002/hep.30638</u>

- 47. Jonas MC, Rodriguez CV, Redd J, Sloane DA, Winston BJ, Loftus BC. Streamlining screening to treatment: the hepatitis C cascade of care at Kaiser Permanente Mid-Atlantic states. Clin Infect Dis 2016;62:1290–6. <u>https://doi.org/10.1093/cid/ciw086</u>
- 48. Kim NJ, Locke CJ, Park H, Magee C, Bacchetti P, Khalili M. Race and hepatitis C care continuum in an underserved birth cohort. J Gen Intern Med 2019;34:2005–13. <u>https://doi.org/10.1007/s11606–018–4649–6</u>
- 49. Konerman MA, Thomson M, Gray K, et al. Impact of an electronic health record alert in primary care on increasing hepatitis c screening and curative treatment for baby boomers. Hepatology 2017;66:1805–13. <u>https://doi.org/10.1002/hep.29362</u>
- 50. Laufer CB, Carroll MB. Hepatitis C virus in the US military retiree population: to screen, or not to screen? J Clin Med Res 2015;7:757–61. <u>https://doi.org/10.14740/jocmr2233w</u>
- 51. MacLean CD, Berger C, Cangiano ML, Ziegelman D, Lidofsky SD. Impact of electronic reminder systems on hepatitis C screening in primary care. J Viral Hepat 2018;25:25. <u>https://doi.org/10.1111/jvh.12885</u>
- 52. Madhani K, Aamar A, Chia D. Hepatitis C screening: the downstream dissemination of evolving guidelines in a resident continuity clinic. Cureus. 2017;9(7):e1441. <u>https://doi.org/10.7759/cureus.1441</u>
- 53. Rowan SE, Muething L, Spielmann K, et al. The yield of birth cohort screening for hepatitis C in community health centers. J Gen Intern Med [Letter] 2019;34:2003–4. https://doi.org/10.1007/s11606–019–05105–4
- 54. Sears DM, Cohen DC, Ackerman K, Ma JE, Song J. Birth cohort screening for chronic hepatitis during colonoscopy appointments. Am J Gastroenterol 2013;108:981–9. <u>https://doi.org/10.1038/ajg.2013.50</u>
- 55. Shahnazarian V, Karu E, Mehta P. Hepatitis C: improving the quality of screening in a community hospital by implementing an electronic medical record intervention. BMJ Qual Improv Rep 2015;4. <u>https://doi.org/10.1136/bmjquality.u208549.w3409</u>
- 56. Sidlow R, Msaouel P. Improving hepatitis C virus screening rates in primary care: a targeted intervention using the electronic health record. J Healthc Qual 2015;37:319–23. <u>https://doi.org/10.1097/JHQ.00000000000010</u>
- 57. Turner BJ, Taylor BS, Hanson J, et al. High priority for hepatitis C screening in safety net hospitals: results from a prospective cohort of 4582 hospitalized baby boomers. Hepatology 2015;62:1388–95. <u>https://doi.org/10.1002/hep.28018</u>
- 58. Yartel AK, Rein DB, Brown KA, et al. Hepatitis C virus testing for case identification in persons born during 1945–1965: results from three randomized controlled trials. Hepatology 2018;67:524–33. <u>https://doi.org/10.1002/hep.29548</u>
- 59. Yeboah-Korang A, Beig MI, Khan MQ, et al. Hepatitis C screening in commercially insured U.S. birth-cohort patients: factors associated with testing and effect of an EMR-based screening alert. J Transl Int Med 2018;6:82–9. <u>https://doi.org/10.2478/jtim-2018-0012</u>
- 60. Younossi ZM, LaLuna LL, Santoro JJ, et al. Implementation of baby boomer hepatitis C screening and linking to care in gastroenterology practices: a multi-center pilot study. BMC Gastroenterol 2016;16:45. <u>https://doi.org/10.1186/s12876-016-0438-z</u>
- 61. Arnold RM, Machover H, Wall ME, Ahmadizadeh I, Potts W, Himelhoch S. "Why me?" Understanding the HCV care continuum among people with serious mental illness. Psychiatr Serv 2018;69:1188–90. <u>https://doi.org/10.1176/appi.ps.201700542</u>
- 62. Burrell CN, Sharon MJ, Davis SM, Wojcik EM, Martin IBK. Implementation of a collaborative HIV and hepatitis C screening program in Appalachian urgent care settings. West J Emerg Med 2018;19:1057–64. <u>https://doi.org/10.5811/westjem.2018.9.39512</u>
- 63. Calner P, Sperring H, Ruiz-Mercado G, et al. HCV screening, linkage to care, and treatment patterns at different sites across one academic medical center. PLoS ONE 2019;14:e0218388. <u>https://doi.org/10.1371/journal.pone.0218388</u>

- 64. Campbell B, Liu B, Bhuket T, Wong RJ. Pilot study of screening patients for hepatitis C virus infection during outpatient endoscopy. Clinical Gastroenterol Hepatol 2018;16:778–80. <u>https://doi.org/10.1016/j.cgh.2017.09.047</u>
- 65. Coyle C, Moorman AC, Bartholomew T, et al. The hepatitis C virus care continuum: linkage to hepatitis C virus care and treatment among patients at an urban health network, Philadelphia, PA. Hepatology 2019;70:476–86. <u>https://doi.org/10.1002/hep.30501</u>
- 66. de la Torre AN, Castaneda I, Ahmad M, et al. Audio-computer-assisted survey interview and patient navigation to increase chronic viral hepatitis diagnosis and linkage to care in urban health clinics. J Viral Hepat. 2017;24(12):1184–91. <u>https://doi.org/10.1111/jvh.12744</u>
- 67. Duininck G, Lopez-Aguiar AG, Lee RM, et al. Optimizing cancer care for hepatocellular carcinoma at a safety-net hospital: the value of a multidisciplinary disease management team. J Surg Oncol 2019;22:22. <u>https://doi.org/10.1002/jso.25738</u>
- 68. Falade-Nwulia O, Irvin R, McAdams-Mahmoud A, et al. Senior center-based hepatitis C screening in Baltimore. Open Forum Infect Dis 2016;3:ofv217. <u>https://doi.org/10.1093/ofid/ofv217</u>
- 69. Fill MA, Sizemore LA, Rickles M, et al. Epidemiology and risk factors for hepatitis C virus infection in a high-prevalence population. Epidemiol Infect 2018;146:508–14. <u>https://doi.org/10.1017/S0950268818000080</u>
- 70. Ford MM, Jordan AE, Johnson N, et al. Check Hep C: a community-based approach to hepatitis C diagnosis and linkage to care in high-risk populations. J Public Health Manag Pract 2018;24:41–8. <u>https://doi.org/10.1097/PHH.000000000000519</u>
- 71. Gade AR, Patel M, West DR, Abrams GA. Prevalence of HCV infection in adults with congenital heart disease and treatment with direct antiviral agents. South Med J 2018;111:137–41. <u>https://doi.org/10.14423/SMJ.0000000000774</u>
- 72. Irvin R, McAdams-Mahmoud A, Hickman D, et al. Building a community-academic partnership to enhance hepatitis C virus screening. J Community Med Health Educ 2016;6. <u>https://doi.org/10.4172/2161-0711.1000431</u>
- 73. Lier AJ, Smith K, Odekon K, et al. Risk factors associated with linkage to care among suburban hepatitis C-positive baby boomers and injection drug users. Infect Dis Ther 2019;8:417–28. <u>https://doi.org/10.1007/s40121–019–0249–y</u>
- 74. McClure FL, Niles JK, Kaufman HW, Gudin J. Drug misuse and hepatitis C virus infection profiles for three generations of patients being monitored for prescription drug adherence. J Addict Med 2019;13:123–30. <u>https://doi.org/10.1097/ADM.0000000000460</u>
- 75. Mera J, Vellozzi C, Hariri S, et al. Identification and clinical management of persons with chronic hepatitis C virus infection Cherokee Nation, 2012–2015. MMWR Morb Mortal Wkly Rep 2016;65:461–6. <u>https://doi.org/10.15585/mmwr.mm6518a2</u>
- 76. Morano JP, Zelenev A, Lombard A, Marcus R, Gibson BA, Altice FL. Strategies for hepatitis C testing and linkage to care for vulnerable populations: point-of-care and standard HCV testing in a mobile medical clinic. J Community Health 2014;39:922–34. https://doi.org/10.1007/s10900-014-9932-9
- 77. Morse DS, Wilson JL, McMahon JM, Dozier AM, Quiroz A, Cerulli C. Does a primary health clinic for formerly incarcerated women increase linkage to care? Womens Health Issues 2017;27:499–508. <u>https://doi.org/10.1016/j.whi.2017.02.003</u>
- 78. Patil N. Testing and treating HCV in Arkansas. J Ark Med Soc 2016;112:220.
- 79. Ramirez G, Cabral R, Patterson M, et al. Early identification and linkage to care for people with chronic HBV and HCV infection: the HepTLC initiative. Public Health Rep 2016;131 Suppl 2:5–11. <u>https://doi.org/10.1177/00333549161310S202</u>
- 80. Robinson A, Tavakoli H, Liu B, Bhuket T, Cheung R, Wong RJ. African-Americans with cirrhosis are less likely to receive endoscopic variceal screening within one year of cirrhosis diagnosis. J Racial Ethn Health Disparities 2018;5:860–6. <u>https://doi.org/10.1007/s40615–017–0432–3</u>

- 81. Takeuchi LC, Pham TK, Katz AR. Hepatitis C virus antibody prevalence, demographics and associated factors among persons screened at Hawai'i community-based health settings, 2010–2013. Hawaii J Med Public Health 2015;74:9–15. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4300540/
- 82. Trooskin SB, Poceta J, Towey CM, et al. Results from a geographically focused, community-based HCV screening, linkage-to-care and patient navigation program. J Gen Intern Med 2015;30:950–7. <u>https://doi.org/10.1007/s11606–015–3209–6</u>
- 83. Zaller ND, Patry EJ, Bazerman LB, et al. A pilot study of rapid hepatitis C testing in probation and parole populations in Rhode Island. J Health Care Poor Underserved 2016;27:214–23. <u>https://doi.org/10.1353/hpu.2016.0049</u>
- 84. Aronson ID, Bennett A, Marsch LA, Bania TC. Mobile technology to increase HIV/HCV testing and overdose prevention/response among people who inject drugs. Front Public Health 2017;5:217. <u>https://doi.org/10.3389/fpubh.2017.00217</u>
- 85. Burton MJ, Voluse AC, Anthony V. Integrating comprehensive hepatitis C virus care within a residential substance use disorder treatment program. J Subst Abuse Treat 2019;98:9–14. <u>https://doi.org/10.1016/j.jsat.2018.11.008</u>
- 86. Des Jarlais DC, Cooper HLF, Arasteh K, Feelemyer J, McKnight C, Ross Z. Potential geographic "hotspots" for drug-injection related transmission of HIV and HCV and for initiation into injecting drug use in New York City, 2011–2015, with implications for the current opioid epidemic in the US. PLoS ONE 2018;13:e0194799. <u>https://doi.org/10.1371/journal.pone.0194799</u>
- 87. Des Jarlais DC, Arasteh K, McKnight C, Feelemyer J, Perlman DC, Tross S. Prescription opiate analgesics, heroin, HIV and HCV among persons who inject drugs in New York City, 2016–2018. Drug Alcohol Depend 2019;204:107459. https://doi.org/10.1016/j.drugalcdep.2019.04.030
- 88. Jordan AE, Des Jarlais DC, Arasteh K, McKnight C, Nash D, Perlman DC. Incidence and prevalence of hepatitis c virus infection among persons who inject drugs in New York City: 2006–2013. Drug Alcohol Depend 2015;152:194–200. https://doi.org/10.1016/j.drugalcdep.2015.03.039
- 89. Neaigus A, Reilly KH, Jenness SM, et al. Trends in HIV and HCV risk behaviors and prevalent infection among people who inject drugs in New York City, 2005–2012. J Acquir Immune Defic Syndr 2017;75 Suppl 3:S325–S32. https://doi.org/10.1097/QAI.00000000001407
- 90. Quinn K, Fong C, Guarino H, Mateu-Gelabert P. Development, validation, and potential applications of the hepatitis C virus injection-risk knowledge scale (HCV-IRKS) among young opioid users in New York City. Drug Alcohol Depend 2019;194:453–9. https://doi.org/10.1016/j.drugalcdep.2018.11.010
- 91. Stockman LJ, Guilfoye SM, Benoit AL, et al. Rapid hepatitis C testing among persons at increased risk for infection—Wisconsin, 2012–2013. MMWR Morb Mortal Wkly Rep 2014;63:309–11. <u>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5779376/</u>
- 92. Talal AH, Chen Y, Zeremski M, et al. Hepatitis C virus core antigen: a potential alternative to HCV RNA testing among persons with substance use disorders. J Subst Abuse Treat 2017;78:37–42. <u>https://doi.org/10.1016/j.jsat.2017.04.011</u>
- 93. Tsui JI, Miller CM, Scott JD, Corcorran MA, Dombrowski JC, Glick SN. Hepatitis C continuum of care and utilization of healthcare and harm reduction services among persons who inject drugs in Seattle. Drug Alcohol Depend 2019;195:114–20. <u>https://doi.org/10.1016/j.drugalcdep.2018.11.026</u>
- 94. Zibbell JE, Hart-Malloy R, Barry J, Fan L, Flanigan C. Risk factors for HCV infection among young adults in rural New York who inject prescription opioid analgesics. Am J Public Health. 2014;104(11):2226–32. https://doi.org/10.2105/AJPH.2014.302142

- 95. Falade-Nwulia O, Mehta SH, Lasola J, et al. Public health clinic-based hepatitis C testing and linkage to care in Baltimore. J Viral Hepat 2016;23:366–74. <u>https://doi.org/10.1111/jvh.12507</u>
- 96. Feldman EB, Balise R, Schiff E, Whitehead N, Thomas E. Barriers to hepatitis C screening in a minority population: a comparison of hepatitis C and human immunodeficiency virus screening rates at a community STD clinic in Miami, Florida. J Community Health 2017;42:921–5. <u>https://doi.org/10.1007/s10900–017–0335–6</u>
- 97. Jewett A, Al-Tayyib AA, Ginnett L, Smith BD. Successful integration of hepatitis C virus point-of-care tests into the Denver Metro Health Clinic. AIDS Res Treat 2013;2013:528904. <u>https://doi.org/10.1155/2013/528904</u>
- 98. Kalichman SC, Washington C, Kegler C, et al. Continued substance use among people living with HIV-hepatitis-C co-infection and receiving antiretroviral therapy. Subst Use Misuse 2015;50:1536–43. <u>https://doi.org/10.3109/10826084.2015.1023451</u>
- 99. Moss T, Martin CW, Klausner JD, Brown BJ. Integration of screening for syphilis, hepatitis C, and other sexually transmitted infections with HIV testing in a community-based HIV prevention program in Miami, Florida. LGBT Health 2014;1:82–5. https://doi.org/10.1089/lgbt.2013.0023
- 100. Radwan D, Cachay E, Falade-Nwulia O, et al. HCV screening and treatment uptake among patients in HIV care during 2014–2015. J Acquir Immune Defic Syndr 2019;80:559–67. <u>https://doi.org/10.1097/QAI.00000000001949</u>
- 101. Raymond HF, Chu P, Nieves-Rivera I, Louie B, McFarland W, Pandori M. Hepatitis C infection among men who have sex with men, San Francisco, 2011. Sex Transm Dis 2012;39:985–6. https://doi.org/10.1097/OLQ.0b013e3182716e59
- 102. Tieu HV, Laeyendecker O, Nandi V, et al. Prevalence and mapping of hepatitis C infections among men who have sex with men in New York City. PLoS ONE 2018;13:e0200269. <u>https://doi.org/10.1371/journal.pone.0200269</u>
- 103. Ma GX, Zhang GY, Jung MY, et al. HCV screening behaviors and infection status among Vietnamese Americans. Am J Health Behav 2015;39:640–51. <u>https://doi.org/10.5993/AJHB.39.5.6</u>
- 104. Saab S, Viramontes MR, Chalifoux SL, et al. Hepatitis C virus prevalence in Egyptian Americans in Southern California. J Clin Gastroenterol 2018;52:55–9. <u>https://doi.org/10.1097/MCG.0000000000858</u>
- 105. Strong C, Hur K, Kim F, Pan J, Tran S, Juon HS. Sociodemographic characteristics, knowledge and prevalence of viral hepatitis infection among Vietnamese Americans at community screenings. J Immigr Minor Health 2015;17:298–301. <u>https://doi.org/10.1007/s10903–014–0015–x</u>
- 106. Bell R, Wolfe I, Cox D, Thakarar K, Lucas L, Craig A. Hepatitis C screening in mothers and infants exposed to opioids. Hosp Pediatr 2019;9:639–42. <u>https://doi.org/10.1542/hpeds.2018–0225</u>
- 107. Berkley EM, Leslie KK, Arora S, Qualls C, Dunkelberg JC. Chronic hepatitis C in pregnancy. Obstet Gynecol 2008;112:304–10. https://doi.org/10.1097/AOG.0b013e318180a4f3
- 108. Boudova S, Mark K, El-Kamary SS. Risk-based hepatitis C screening in pregnancy is less reliable than universal screening: a retrospective chart review. Open Forum Infect Dis 2018;5:ofy043. <u>https://doi.org/10.1093/ofid/ofy043</u>
- 109. Brogly SB, Saia KE, Werler MM, Regan E, Hernandez-Diaz S. Prenatal treatment and outcomes of women with opioid use disorder. Obstet Gynecol 2018;132:916–22. <u>https://doi.org/10.1097/AOG.0000000002881</u>
- 110. Chappell CA, Hillier SL, Crowe D, Meyn LA, Bogen DL, Krans EE. Hepatitis C virus screening among children exposed during pregnancy. Pediatrics 2018;141. <u>https://doi.org/10.1542/peds.2017-3273</u>

- 111. Ellington SR, Flowers L, Legardy-Williams JK, Jamieson DJ, Kourtis AP. Recent trends in hepatic diseases during pregnancy in the United States, 2002–2010. Am J Obstet Gynecol 2015;212:524.e1–7. https://doi.org/10.1016/j.ajog.2014.10.1093
- 112. Epstein RL, Sabharwal V, Wachman EM, et al. Perinatal transmission of hepatitis C virus: defining the cascade of care. J Pediatr 2018;203:34–40.e1. <u>https://doi.org/10.1016/j.jpeds.2018.07.006</u>
- 113. Gowda C, Kennedy S, Glover C, Prasad MR, Wang L, Honegger JR. Enhanced identification of maternal hepatitis C virus infection using existing public health surveillance systems. Paediatr Perinat Epidemiol 2018; 32:401–10. <u>https://doi.org/10.1111/ppe.12481</u>
- 114. Jessop AB, Watson B, Mazar R, Andrel J. Assessment of screening, treatment, and prevention of perinatal infections in the Philadelphia birth cohort. Am J Med Qual 2005;20:253–61. <u>https://doi.org/10.1177/1062860605279474</u>
- 115. Ko JY, Haight SC, Schillie SF, Bohm MK, Dietz PM. National trends in hepatitis C infection by opioid use disorder status among pregnant women at delivery hospitalization United States, 2000–2015. MMWR Morb Mortal Wkly Rep 2019;68:833–8. https://doi.org/10.15585/mmwr.mm6839a1
- 116. Koneru A, Nelson N, Hariri S, et al. Increased hepatitis C virus (HCV) detection in women of childbearing age and potential risk for vertical transmission United States and Kentucky, 2011–2014. MMWR Morb Mortal Wkly Rep 2016;65:705–10. https://doi.org/10.15585/mmwr.mm6528a2
- 117. Krans EE, Zickmund SL, Rustgi VK, Park SY, Dunn SL, Schwarz EB. Screening and evaluation of hepatitis C virus infection in pregnant women on opioid maintenance therapy: a retrospective cohort study. Subst Abus 2016;37:88–95. <u>https://doi.org/10.1080/08897077.2015.1118720</u>
- 118. Kuncio DE, Newbern EC, Johnson CC, Viner KM. Failure to test and identify perinatally infected children born to hepatitis C virusinfected women. Clin Infect Dis 2016;62:980–5. <u>https://doi.org/10.1093/cid/ciw026</u>
- 119. Lazenby GB, Orr C, Guille C, Meissner EG. Increasing prevalence of chronic hepatitis C virus infection in a southern academic obstetrical clinic. South Med J. 2019;112(6):325–30. <u>https://doi.org/10.14423/SMJ.00000000000988</u>
- 120. Ly KN, Jiles RB, Teshale EH, Foster MA, Pesano RL, Holmberg SD. Hepatitis C virus infection among reproductive-aged women and children in the United States, 2006 to 2014. Ann Intern Med 2017;166:775–82. <u>https://doi.org/10.7326/M16–2350</u>
- 121. McDowell ML, Tonismae TR, Slaven JE, et al. The impact of hepatitis C virus infection on buprenorphine dose in pregnancy. Am J Perinatol. 2019;26:26. <u>https://doi.org/10.1055/s-0039-1698838</u>
- 122. Nolen LD, Gustin C, Seeman S, et al. Risk-based prenatal hepatitis C testing practices and results, Alaska 2013–2016. Can J Gastroenterol Hepatol 2019;2019:8654741. https://doi.org/10.1155/2019/8654741
- 123. Nolen LD, O'Malley JC, Seeman SS, et al. Hepatitis C in pregnant American Indian and Alaska native women; 2003–2015. Int J Circumpolar Health 2019;78:1608139. <u>https://doi.org/10.1080/22423982.2019.1608139</u>
- 124. Page K, Leeman L, Bishop S, Cano S, Bakhireva LN. Hepatitis C cascade of care among pregnant women on opioid agonist pharmacotherapy attending a comprehensive prenatal program. Matern Child Health J 2017;21:1778–83. <u>https://doi.org/10.1007/s10995–017–2316–x</u>
- 125. Patrick SW, Bauer AM, Warren MD, Jones TF, Wester C. Hepatitis C virus infection among women giving birth Tennessee and United States, 2009–2014. MMWR Morb Mortal Wkly Rep 2017 May 12;66:470–3. <u>https://doi.org/10.15585/mmwr.mm6618a3</u>

- 126. Salemi JL, Spooner KK, Mejia de Grubb MC, Aggarwal A, Matas JL, Salihu HM. National trends of hepatitis B and C during pregnancy across sociodemographic, behavioral, and clinical factors, United States, 1998–2011. J Med Virol 2017;89:1025–32. https://doi.org/10.1002/jmv.24725
- 127. Salihu HM, Connell L, Salemi JL, August EM, Weldeselasse HE, Alio AP. Prevalence and temporal trends of hepatitis B, hepatitis C, and HIV/AIDS co-infection during pregnancy across the decade, 1998–2007. J Womens Health 2012;21:66–72. <u>https://doi.org/10.1089/jwh.2011.2979</u>
- 128. Schillie SF, Canary L, Koneru A, et al. Hepatitis C virus in women of childbearing age, pregnant women, and children. Am J Prev Med 2018;55:633–41. <u>https://doi.org/10.1016/j.amepre.2018.05.029</u>
- 129. Snodgrass SD, Poissant TM, Thomas AR. Notes from the Field: Underreporting of maternal hepatitis C virus infection status and the need for infant testing Oregon, 2015. MMWR Morb Mortal Wkly Rep 2018;67:201–2. <u>https://doi.org/10.15585/mmwr.mm6706a6</u>
- 130. Waruingi W, Mhanna MJ, Kumar D, Abughali N. Hepatitis C virus universal screening versus risk based selective screening during pregnancy. J Neonatal Perinatal Med 2015;8:371–8. <u>https://doi.org/10.3233/NPM-15915024</u>
- 131. Watts T, Stockman L, Martin J, Guilfoyle S, Vergeront JM. Increased risk for mother-to-infant transmission of hepatitis C virus among Medicaid cecipients — Wisconsin, 2011–2015. MMWR Morb Mortal Wkly Rep 2017;66:1136–9. <u>https://doi.org/10.15585/mmwr.mm6642a3</u>